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We present conditions under which a point process of certain jump

times of a Markov process is a Poisson process. One result is that if

the Markov process is stationary and the compensator of the point process

in reverse time has a constant intensity a, then the point process is

Poisson with rate a. A classical example is that the output flow from a
M/M/! queueing system is Poisson. We also present similar Poisson
characterizations of more general marked point process functionals of a
Markov process. These results yield easy-to-use criteria for a
collection of such processes to be multi-variate Poisson or marked
Poisson with a specified dependence or independence. We give several
applications to queueing systems, and indicate how our results extend to
functionals of non-Markovian processes.

Poisson process. multivariate compound Poisson

Keywords and phrases:

process, functionals of Markov processes, queueing nctworks, time

reversal .
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K 1. Introduction i\
N -
There are a variety of point processes associated with the jump §
.
» times of a Markov process. For instance, in a Markovian network of
3 +
1 L]
. "
v . queues, one might be interested in the point process of times at which )
\
x , _ 4
units move between twu sectors of the network. More generally, if the ,
o network has synchronous movements of items., one might be interested in -
3 .
l -
# . . . . iy
K the marked point process of the times at which batches of units move "
L/ !
be tween two sectors and the pumbers of units in the batches {the batch ‘
X
- size being the "mark™ of the time of the movement). One can formulate O
e 0
Q . . . v
X such a point process as a functional of the Markov process representing Y
A 3
. the network. The typical aim is to describe the behavior of the point
\ process in terms of the characteristic of the Markov process. Some \
0 b
e . o o
immediate questions in this regard are: Is such a point process Poisson ¢

{or marked Poisson)? 1Is a collection of these point processes

multi-variate Poisson (or marked Poisson): and what are the dependencies,

-

o
» if any, among them? b
. "
v These are the issucs this study addresses. We begin in Section 2 by $
o
X presenting conditions under which a point process of certain jump times _’
j: of a Markov process is a Poisson process. It is well known that a simple :‘
[ R
point process on the real line is Poisson with rate a if its compensator i
: has the constant intensity a (Theorem 2.3(i)). We present a reverse-time :
Y Y,
' version of this (Theorem 2.3(ii)). It says that il the Markov process is J
b stationary and the compensator of the point process in reverse time has >
N the constant intensity a, then the point process is Poisson with rate a. 3
i :-
w» ¥
[T ,5‘
\ -
: W\
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. .
D
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'
o
]
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This is an easy-to-use criterion for establishing whether a point process

of jump times is Poisson. We also give necessary conditions for this

Poissonness. In Section 3, we present similar conditions under which

more general functionals of a pure jump Markov process are marked Poisson

processes. Some of our results overlap those of Melamed (1979), Brémaud

(19S81), Variaya and Walrand (1981), and Disney and Kiessler (1987).
Melamed and Disney and Kiessler derive their results using a Markov
renewal argument and Brémaud, Variaya and Walrand use a filtering

argument. We use a simpler approach based on the notion of the time

reversibility of the compensator of a point process. This approach lays

bare the characteristics underlying the Poisson property, and it readily

extends to the more general settings in Sections 3-5H.
The applications in this area have been primarily for queueing

systems. Burke (1956) and Reich (1957) showed that, in a stationary

M/M/} queueing system, the output [low is a Poisson process with the same

rate as the Poisson input flow. Similarly, the exit flows [rom the

queues in a Jackson network are independent Poisson processes: this is

discussed in the references in the preceding paragraphs and in Kelly
(1979). In Sections 2-4,

Disney and Konig (1985) and Whittle (19806). we

discuss applications identifying Poisson, compound Poisson and
multivariate-Poisson flows in single queues and in gueuecing networks with
dependent nodes. We end in Section H by indicating how our results
extend to Markov processes with general state spaces and to functionals

of semi-Markovian processes.
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:‘ 2. Jump Times of a Markov Process Lhat Form a Poisson Process o
e
. Let X = (Xli t € R} be a Markov process with a countable state space
a0 -
) .
z' 9 and transition rates 3
o': o
;‘.‘ . q(x.y) = lxlm P(X =y | onx)/l. X Z£Y. J
¥ 0
v and g(x.x) = 0. We indicate later how our results extend to a general
L
o] e
‘;. state space. We adopt the standard assumption that .
\ K
' ?
- q{x):= 2 q(x.y) < @, x € 1, i
y
o and that each sample path of X is right continuous and has a finite %
t }
o
\
o:‘ number of jumps in any finite time period. Then the sojourn time of X in :
I %
) -
A a state x is exponential with mean q(x) l and, at the end of the sojourn, ::
K X jumps to some state y with probability q(x.y)/q(x). y€l. For
.
. convenience, we assume that X is irreducible. bt
9] W\l
:.‘ . We shall swtudy the point process N on R defined by e
e (2.1) N(A) = % f(Xl_,Xl) n
o t€A
: where A is a Borel set in Rand f: 1 x 2 - {0, 1} with I'{x.x) =0, x € 1. f
»
0
' The N(A)} is the number of jumps of X from some x to some y for which b
:: f{x.y} = 1 in the time period A. Any such f is an indicator function
. t
) f(x.y) = I((x.y) €8S) of a subset § of 7 x ¥ that does not contain pairs :c,
3 of identical values: the N(A) would then be the number ol transitions of ;
‘,:: X in the period A that take place in the transition set S. Clearly N(A) :
! s
::l is finite when A is bounded and it may be infinite when A is unbounded. .
! We shall frequently use the function :
:' ‘ (2.2) a(x) = ¥ q(x.y)f(x.y). x C 9.
s Yy
- First note that the mean measure of N s
) )
* h
& 4
i. v
'
:‘: 1
0'.
"'
:'. lh
i oy
P u
Y . . . i~
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(2.3) EN(A) = /AEa(Xl)dl

which is Levy's formula (see for instance Benveniste and Jacod (1973)).
When X is stationary. an easy check shows that N is stationary (i.e. for
An. the distribution of N(Al+t) ..... N(Anﬂ) is independent of
t). Consequently., EN(s,t] = a{t-s). s < t in R, where

(2.4) a = EN(O,1] = 2 w(x)q(x.y){(x.y)
X.y
and w(x) = P(thx} is the equilibrium (or stationary) distribution of X.

Here O { a ¢ @. Also., with probability one, L-IN(s.s+t] 2 aas t » o,
One can use N to model a variety of event occurrences of X by
appropriate selections of f. For instance, suppose X takes values in

m

a = Z+. the m—dimensional vectors with nonnegative integer-valued

entries. Then N records the downward jumps of X when f(x,y) = 1 iff
X # y and xJ. 2 yj. j=l.. ... m. Similarly, N records the jumps of X at
which the maximum component does not change when f(x.,y) = 1 iff x # y and

max x]. = max yi.
,j . J .

We shall investigate conditions under which N is a Poisson process.

We say that the future of N is independent of the past of X, denoted

N, L X_ . if {N(A): A C [t.®)} is independent of {X,7 u <), t€R,

({Xul u ¢ t} can be replaced simply by XL since X is Markovian).

Simi larly, N__‘uX+ denotes that the past of N is independent of the
future of X. Our first result is that these conditions are sufficient
for N to be a Poisson process: the N might be a non-statiomary Poisson

process. We write "N is #(a)” 1o mean that N is a stationary

e %) w e B0 I I P R .Y Ay Ay *'-"'. s N o 3w (% S VALY ) —\\\"\-\qﬂn"
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PN

(time-homogeneous) Poisson process with rate a. The degenerate case a =

O corresponds to N = O; the case a = ® is not poussible.

_: Theorem 2.1. If N+ Lx or N_L X+. then N is a Poisson process. In
._ . this case, N is ®(a) if and only if Ea(X[) =a, t €R.
I‘ Proot. The N is a Poisson process if it is simple (i.e.. N({t}) = O or
E I, t € R), it has no fixed atoms and has independent increments (i.e.,
:5 N(Al)""'N(An) are independent for disjoint Al’ ..An): see p. 58 of
" Kallenberg (1983). Since the probability is zero that X has a jump at
:: any specified time. it follows that N is simple with no fixed atoms. Now
!
N suppose N+ LX . Then. for any s < t in R,
P{N(s.t] =n | N(A) : A C (-=5s])

= E[P{N(s.1] = n | X, : 1 <)) = P{N(s.t] = n}.
‘ Thus N has independent increments and hence N is Poisson. This
E - conclusion also follows when N_ U X+ since
; P{N(s.t] = n | N(A) : A C [t ,»)}
. = E[P{N(s.t] = n | X, P u2t)]=PNs.t) =
.\' The second assertion on the stationarity of N follows from (2.3).0
',: Remirk 2.2. From the proof, it is clear that the [irst assertion of
¥
i:. Theorem 2.1 is true for any pure jump stochastic process X; the Markovian
A property is used only for the second assertion. Also, both assertions E\
:": are true when X is a Markov process that is not time homogeneous (its :6.:
: transition rates are time dependent). Melamed (1979) showed that N 4 X_ %
2 implies that N is Poisson: his argument relies on the property that X and :\::
\ ) {(N{s.1]. XL): t 2 s} are Markovian. ;:
' ::
Y j'..:
l
"y
»
'
3- 5
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1 !
: We now discuss conditions oh the paramcters of the Markov process X N
h 1
: under which N is ?(a). When X is stationary with equilibrium )
i' . lh
*: distribution nw, we shall frequently use the function :.
‘ ]
s * -1 W
;: (2.5) a (x) = m(x) I w(y)gly.x)f(y.x). x C 4. A N
) y Y,
)

Theorem 2.3. (i) If a(x) = a, x € I, then N, Lx_ and N is #a). (ii)

»* |
3 IfF X is stationary with equilibrium distribution v, and a {(x) = a, x C ¥4, N
LN
. ™
: then N_ L )(+ and N is %(a). Y,
Proof. Assertion (i) is a special case of Theorem 18.9 in Liptser and .
h
N g
| L - e . - . t
a: Shiryayev (1978) (or Theorem T5 in Bremaiud (1981)). which says that a %
) X
. . . : o o
simple point process on R is “(a) if its compensator has the non-random y
W]
intensity a. In our setting, for each s € R, the process '
¥ iy
\ i +1 '_-‘
X (2.6) M =Ns.s+t]- /> a(X )du N
[\ t S '\
" N
» is an :'Zl—murlingale. where Yil = U(Xu: s ¢u<s + 1) the process "3
..
s+t . :
/\‘ = {7 (‘( Ydu is the compensator of N(s. s + t] and u(X() is the '
" )
5 . . . Kd
y intensity of this compensator. o
] *
: . ) . . * v
) o prove assertion (ii), consider the process Xl = X—t' t € R, where 2
v * A
. )(t = X(—' The X is the right-continuous time-reversal of X. Lach )
:l. "
. . . °
! sample path of X is the same as a sample path of X traversed in the N
s
, opposite direction, and vice versa. Since X is stationary, it follows :
D y 2
that X is an irreducible, stationary Markov process and its transition )
. rates are ::'
» ! v Ny
; q (x.y) = 7(x) ‘rly)a(y.x). x.y €1, N
! . - * l’-
; Define the point process N on R by 1
* R R -
! N (A = X (X(_. )\() ~
| tCA >
/ > . » ~
o where | (x.,y) = f(y.x). x.y €%, Clearly N (A) = N(-A). Tor each A, and .
§ ‘4
)
! g
)
t, .:
)
: 2
¢
- )
* -
L) w - 0 - 0
- '&“ g " '."'u' - ~.' Sy T T Wy 0 T T G T T T v _-\._\‘ 5
“".‘l:"! |~q|..' *, .,4".,- .\\_.v\.-.r.- r\ . -"f\-( Ju'): P‘.(‘:"Wﬂ: x.,:
s ) NSNS AT SN, A " \."\!- \{jﬂ}ﬂ LS A\ ‘\.3"_\ "
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SO N* is the time-reversal of N. Consequently, N is (a) if and only if

N is #(a).
Now observe that u*(x) =2 q*(x.y)f*(x.y). That is, a" is the
y
. * * %
function a for the processes X , N . Then an application of (i) to X N

2 3 2 .
says that N+ L x~ and N is #(a). But these statements are eqivalent to
. n . . * %
the respective statements that N_ X+ and N is *(a). since X ., N are
the time reversals of X,N.O
Remarks. (1) In Theorem 2.3, statement (i) is the well-known

property of Markov processes that N is #{a) if the intensity a(X() of N's
compensitor equals the constant a. Statement (ii) is simply a reversed
time version of (i): it is (i) in terms of X and N viewed in reverse

. - »* . . . . * %
time. The a is the reversed time version of ¢ in the sense that a (XL)
is the intensity of the compensiator of N in reverse time. Also. N__-u-X+

(ii) is the tvime reversal of N+ Lx_in (i). (2) Note that the
process X in (i) may be transient., recurrent or non-stationary: but in
{ii). X must be stationary. (3) In consulting the references for
Theorem 2.3(i). one can sce that this result is true for a non-Markovian
process X for which a: 9 - R* is a function such that the process M[ in
{2.6) is an ﬂl—murlingulc. Similarly. it follows that Theorem 2.3(ii) is
: '.c* . . s

true for a non-Markovian process X if a @ 3 = R+ is a function such that,

for each seR,
S Lo
= N[s-t.s) - ls-l a (\“)du

»* % ,
is an ﬁl-murtingulc where Fo= n(x”: s=t < u < s).
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In applications., the Poisson property of N due to a(x) = a, x € 1,
is usually foreseen, while the Poisson property of N due to a*(x) = a, X
€ 1, might not be anticipated. Here is an example.
Fxample 2.1. M/M/1 and Batch Service Queues. Suppose the Markov process

X has the state space Z+ and transition rates

g(n.n + 1) = A n ¢ Z+
g{n.n - K) = n n 2Kk
q(n.0) = p n <K

where A, p and K are positive. This process represents the number of
customers in a queueing system in which customers arrive singly at the
rate A and are served in batches such that when n 2 K customers are in
the system, then batches of K customers depart at the rate p: and when

n < K customers are present, then all of the customers depart at the rate
. When K = 1, this is the WM/ queueing system.

Implicit in the description of this queuecing system, the point
process N of customer arrivals is P(A), regardless of whether X is
transient or recurrent.  Indeed. this follows from Theorem 2.3 (i) since
N is defined by (2.1) with f{n.,n') = | iff n' = n + 1 and

a(n) = ¥ q(o.n)f(n.n’) = qg(n.n + 1} = A,
.

Now. suppose that N denotes the point process of times at which
bxvtehes of sive K depart from the system. This is defined by (2.1) with
f{n.n') =1 iff n'" =n-Kand n , K. In this case,

a(n) = q(n.n - K} {(n > K) = pi(n 2 K).
This depends on n, and so Theorem 2.3 (i) does not ensure that N g

Poisson. However., assume that X is statiomary. Necessarily, A < pk and

the equilibrium distribution of X is
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n(n) = rn(l -r), n > 0,

where r € (0.1) is the unique root of

K+1

ur -~ (A+u)r+A=0

(see Section 3.2 of Gross and llarris (1985)). Clearly

a*(n) = 1r(n)-l 2 wm(n')q(n’'.n){(n’.n)
n

7(n)"! #(n + K)a(n + K.n)

urK =u+ A1 - /7).

"

Thus. we conclude by Theorem 2.3 (ii) that the process N is

P + A1 - 1/r)). One would probably not anticipate this result from
the description of the process, or even from earlier work in this area.
For the special case in which X is the M/M/] quecue, we have K = 1,

r = Mu, and so N, which is the depuarture process, is {(A). Burke (19506)
and Reich (1957} were the first ones to prove this.

Example 2.5. Quecues With Compound Poisson Arrivals and Poisson
Departures. Suppose the Markov process has the state space Z+ and

transition rates

m-1

g(n, n + m) = An p {1 - p) m > 1, n C Z+
g{n. n - 1) =p n |l
n
where An' u, are positive and O < p < 1. This process represents the

number of customers in a queueing system in which batches of customers
arrive at the rate An when n customers are present and the number of
customers in a batch has a geometric distribution with parameter p. The
customers depart at the rate Z when noare in the system.  The

equilibrium distribution of X is

_l -
w(n) = n(O)Aoul ceemy m (Ak + H‘k)' n2l,
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10

provided the sum of these terms over n is finite, which we assume is true
(see Kook (1988)).
Suppose that N is the point process of customer departures. This is

defined by (2.1) with f(n.n') =1 iff n° =n - 1. Clearly,

I
>

a™(0) = n(0) ' m(1)a(1.0)
a*(n) = w(n)_ln(n + 1l)g(n + 1.,n) = An + P . n>l.
Thus, if X is stationary and AO = a and An + PH, =a. n 2 1. then the
departure process N is “(a).
We end this section with elaborations on Theorem 2.3 that establish
necessary conditions for N to be Poisson.
Theorem 2.6. When X is recurrent, the following statements are
equivalent.
(i) N+ L X and N is #(a).
(ii) a(x) = a, x € 9.
(iii) N L X_ and EN(s,t] = a(t-s), s < t in R.
(iv) E[a(X ) | X,=x]=a, x€4 s<tinR.
Proof. Theorem 2.3 ensures that (ii) implies (i). Clearly (i) implies
(iii). Now, if (iii) holds, then. for s < t in R,
a(t-s) = EN(s,t] = E[N(s.t] | X, = x]
= J; Ela(x) | X =x]du
the last equality being Lévy's formula. Taking the derivative of this

with respect to t yields (iv). Finally, if equation (iv) holds, then

taking the derivative of it with respect to t and letting 1 s, we

obtain
2 a(y)g(x.y)/q(x) = a(x) for cach x.
y
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X This says that a is a harmonic function of the Markov matrix

{q(x.y)7q(x)}. Now. this matrix is recurrent under the assumption that X
‘
. is recurrent. But we know (see for instance Section 7.2 of Cinlar
i (1975)) that harmonic functions of irreducible, recurrent Markov chains
L)

are constant. This observation and equation (iv) imply (ii).O
4

Theorem 2.7. When X is stationary with equilibrium distribution m, the
{
1

following statements are equivalent.

(i) N_Jlx+ and N is Na).
D)
: *
f (ii) a (x) = x € 4.
: (iii) N_L X and EN(O.1] =
2
(iv) E[a (XS) | X[ =x] =a, x€4,s <t inR.
3
(v) a(x) =2 a(y)r(y) =a, x € 4.

Az Yy
0 Proof. The equivalence of (i) - (iv) follows from Theorem 2.G applied to

the reversed-time processes N*, X* defined in the proof of Theorem 2.3.
L]
S Furthermore, (v) obviously implies (ii). And (ii) implies (v) since N is
y
P #(a) by (i) and by (2.4). we have

= EN(0,1] = ](’) Ea(X )dt = 3 afy)w(y).
y

K Thus (i)} - (v) are equivalent statements.O
o
» Remark 2.8. Statement (v), relating u* to a. is the "independence

condition™ that is the focus of Melamed (19¢9), Brémoud (19S]) and
\ Varaiya and Walrand (1981). Their main result, which is implicit in
) Theorem 2.7, is as follows: If X is stationary with equilibrium
¥
. dimrmuﬁmlﬂ.HmnN_nX+ifum1mﬂyifuﬂx):ﬁtﬂ”n”). x C 1,
: y
h In this case, N is #(a) where a is the preceding sum.
]
1
0
}
)
]
1
4
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Although we are considering processes N and X defined on the entire
real line, our results herein also apply to such processes defined on any
time interval ] in R. Indeed. consider the process extended to all of R
and then the results apply to these extended processes and hence to their

restrictions to 1.

3. General Poisson Functionals of Markov Processes

We have been studying the point process N that records the times at
which the Markov process X jumps from some x to some y with f(x.,y) =
We shall now study a more general point process that records additional
information at these jumps. Suppose that h is a function from 2 x 4 to
some space ¥'. Consider the marked point process M on R x 1’ defined by

(3.1) M(AxB) = 3 f(X __.X)I(h(X _.X ) € B)
tCA

where f is as above, A x B is in the o-field of R x 9" and 1(+ € B)

the indicator function of B. This M is a functional of X that records
the "mark™ h(Xl_.Xl) at each jump time t of X at which f(Xl_.X{) =1. As
a point process, M is simple and M({t} x4’} = 0O or 1. t € R. Also,

M(A x 2') = N(A) records the times at which M records the marks.

In this section, we identify conditions on X under which M is
Poisson with EM((s.t] x B) = a(t-s)F(B). where a > O and F is a
probability measure on 9°. In this case, the process N of occurrence
times of the marks of M, is ¥(a), and cach mark has the distribution I.

We call such an M a marked Poisson process with rivte a and mark

distribution I, and we simply say M is #f(a.l").
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The approach we used in Section 2 for deriving Poisson characteri-

zations of N readily extends to yield murked Poisson characterizations of

) M. The following results are analogues of Theorems 2.1, 2.3 and 2.7; the

analogue of Theorem 2.6 can be seen from Theorem 3.3 and hence is not

Their proofs are omitted since they follow the same line of

displayed.

reasoning as their counterparts in Section 2. Here we let 4

a(x.B) = Z q(x.y}f(x.y)I(h(x.y)} € B)
\ Yy &

»* -1 o .
. a (x.B) = m(x) ~ X m(y)aly.x)f(y.x)I(h(y.x) € B). '
K y N
i Theorem 3.1. If M+ Lx orm 4 X+. then M is n Poisson process. In ::‘,

' this case, M is #r(a.F) if and only if E(!(X(.B) = aF(B). for each t and .":

B.

5 Theorem 3.2. (i) If a(x.B) = aF(B). for cach x and B, then M+ L x_ and 3

" M is #M(a.F). (i) If o (x.B) = aF(B). for each x and B, then M_ 1 X,

and M is M¥(a.l).

'
e Theorem 3.3. When X is stationary with equilibrijum distribution w, then ’
d o
. the following statements are equivalent. ¥,
: (i) M_LX and M is &r(a.F). !,’
[ . »* . . 9
[ (ii) a (x.B) = aF(B). for each x and B. ¢
« e
d (iii) m_4 X, and EM((0.1] x B) = aF(B) for each x and B. e
) o~
. (iv) E[u*(XS‘B) | Xl=x] = aF(B). for each x, Band s < t in R. !
: )
’ (v) a*(x.B) = 2 aly.B)r{y) = aF(B), Tor cach x and B, -
(W y !

=5

Point processes ol the lform (3.1) are useful for representing

multivariate and compound point processes. Indeed, suppose one is o,
\ interested in the n-dimensional compound point process (Ml ..... Mn) Y/
) \
.. \

! def ined by

-y

uh NG~ " ey ‘k' y AN N LAY, \.
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; (3.2) M(A) = 3 F(X X )h (X _.X) M
! J LEA J ' 0
. where hj: 4 x X » R (or any other group). These processes contain the )
’ Y
. same informtion as M defined in (3.1) with 4° = R” and g
g h(x.y) = (h (x.y).. .hn(x.y)). More precisely. there is a one-to-one N
)
. e
y correspondence between point processes M on R x R" as in (3.1) and )
' "
; n-dimensional compound point processes (M,.....M ) as in (3.2). Note !
E) .(
IN¢
¥ that M on R x R" is P (a F) if and only if its corresponding (Ml....,Mn) ;
)
y
is an n-dimensional compound Poisson process with rate a and atom )
distribution F on R®. In this case, !a
& 1t
, P(M (s.t] € B..... M (s,t] €B iy
k k N
- B x B )k (1) e2(78) )
- T k=0 n e
s!
h And each Mj is a compound Poisson process with rate aj = a(l-FJ(O)) and ‘
‘ ¢
: atom distribution Fj‘ where FI ..... Fn are the marginal distributions of "
\ F. Here are some special cases: o
"
J %
Cl: Ml ..... Mn are independent compound Poisson processes with rates “
{
g
b a,.,.... a_ and atom distributions F_,...,F if and only if F = F x...xI" . ?
1 n 1 n 1 n \
) c2: (Ml ..... Mn) is an n-dimensional Poisson process with rate a and !‘
u ]
y mﬁnta“ouﬂimxdblﬂijm\Fon(OJ}nifamimdyifFlmssummr(on RT
A !
(O.l)n. In this case, cach Mj is W(uj). A
C3: Ml ..... Mn are independent Poisson processes with rates Qpeee a if L
]
s and only if F has support on (cl....cn). where cj is the jth unit vector g'
A with | in entry j and O's elsewhere. -~
-~
N Remark 3.4. Each of the preceding theorems hold for these cases Cl, (2, "
) )
D
b C3 when the F in the theorem is as specified in the case of interest. )
L)
' For instance, Theorem 3.2(ii) for case C3 reads: If a*(x.{ej)) =aj. a
)
)
N <
\ 2
N o
:0 ':
, 4 \4
:’,‘:'Q' ‘.::‘. .:s.‘.A ' : :..(-:S‘- " t ::::;\:‘(\ ,4 & ?;)‘ d-.*:;,“-}ﬁ}'f ‘\-'),‘\.'. 0 N)‘b‘;‘ *a ':( e ‘.- o~ ',n 0 Q""" RO
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D) E3 .
e j=l.....m, and a (x.{z}) = O otherwise, x € 4, then (Ml""'Mn)"nX-l» and 3
1
. Ml""'Mn are independent Poisson processes with respective rates
[}
" a,.....a_.
:: 1 n .
:' : An obvious application of Theorem 3.2(i) shows that the process of a4
¢ A
customer arrivals in Example 2.5, when A = A, is a compound Poisson
§ n
i . . . . . m-1 }
K process with rate A and geometric atom distribution p (1-p). The :
. P
A
:: following is an example of 2 not so obvious compound Poisson flow in a )
{
queueing process. -
‘I
K . . . . N
' Example 3.5. A Batch-Service Queucing System With Poisson Arrivals and N
&
0
} :
G . N
’ Compound Poisson Departures. Suppose the Markov process has the state
space 7. and transition rates
L + y
3‘ a(0.1) = A(1 - p). q(n.n+1)=A n21l, :
m-1 ),
4 q(n.,n - m) = up (1 - p) 1 <m<n, n 21, iy
L)
4
n~1 "
q{n.0) = pp n2 1,
; N
j‘.; . where A, are positive and O < p < 1. This process represents the number X
n:' .:
p of customers in a queueing system in which customers arrive at the rate A X
K X
. and are served in hatches as follows. When there are customers in the
¥ .
. system, "buses”™ arrive at a rate p to take them immediately from the
A
G .
queuc. Busing is a common practice in computer systems and material ';
handling systems. The number of customers each bus can take is a random '
. . . . . . . m—] 7
- variable with the geometric distribution p "(1-p), m 2 1. Also., when :
e o
:," there are no customers in the queue and a customer arrives, then with .
- -
/ probability p there is a bus available to take the customer without A
: delay. The equilibrium distribution of X is .
/ n n *
: w(n) = 7{(O)(1-p)N /(u + pA) . n>l, o
¢ - n
o . . . h
' provided A < )1 + pA, which we assume is truc (sce Kook (1988)). ¥
R N
a.l )
, ‘
h
,'g |‘
2
A%
44 n
™ \ AR AL ST R SRS TAN STRAT T T T Tt N D <. . - ~ e
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1‘
Consider the compound point process G
D(A) = I wmax{O0, X - Xt_} ..-

LtCA F.
that describes the total number of departures in the time period A. It o
.l
records the times at which batches of customers depart and the batch ' :;
sizes as well. This process corresponds to M in (3.1) with f(n.n"} = 1 o
by
iff n* # n and ":t'
n-n n" ¢(n .||
h(n.n") = et

0 n" >n [

s,
Clearly, for each n > O and m > 1, |"':.

X

@ (n.{m}) = 7(m)"1 = w(n')a(n .n)f(n .n)1(h(n".n) = m) b

n' X

23
= w(n) r(n + m)a(n + m.n) °

Yo

= M1 - p)F({m)). 53

where F({m}) = r"‘"l(l—r). m>1, and r = pA/(u+pr). Thus, if X is ::
W

stationary, then Theorem 3.2(ii) implies that M is AP(A(! - p).F). Hence

o
-

ANy

D is a compound process with rate A(l - p) and geometric atom

<
distribution F. ~4
i‘f
Bg'
®
v
4. Poisson Flows in a Network of Queues t
l.'—
o
We shall consider a queueing network process defined as follows. b}
Sk
!
Suppose that X(t) = (Xl(t),...,Xm(t)), t € R, is a queueing network '.'
- .
process on m nodes., where XJ_(() denotes the number of units (i.e. :ﬁi
o
customers) at node j at time t. The process X takes on values ;:1
A
. .,m . . LM . o
n = (nI ..... nm) inZ . Let o denote the jth unit vector in Z_ with I in
o
entry j and O's elsewhere. As in Whittle (1986), we assume that units ¢
move among the m nodes such that X is a Markov process with transition
rates e
]
a
W)
s
l‘:l
00 SOANSS AT AT AT A A% A DS OASLEE
I-H' W" o ‘G“‘W Ny “\.-"-ﬁ:‘ e .r," EAGN N . -\-\:}}._-*._q ,.vl‘\f.-“ n u" -Q-\J"\h
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(4.1) q{(n.n + ek) = AOk
q(n,n - ej + ek) = Ajk¢(n - ej)/¢(n). n\j 2 1.
q{n.n - ej) = Aj0¢(n - cj)/¢(n). nj 2 I,

and q(n.n') = O for all other states n'. Here ¢: /T » (0.»), the A's are
nonnegative, and the subscript O denotes the "outside” node. Under this
assumption, units enter the nodes l,....m by independent Poisson
processes with respective rates A

WA When X is in state n, then

o1 Om’
i Ajk ¢(n—ej)/¢(n) is the departure rate of units from node j. The Ajk
is the "arc-dependent” routing intensity from node j to node k, and
¢(n—ej)/¢(n) is the "system-dependent™ depiarture intensity from node j
{the ratio representing the potential difference between the system in
state n and in state n-ej with one less customer at node j).

We shall assume that X is irreducible. This is equivalent to the

irreducibility of the Markov routing matrix

m
(4.2) p(j.k) = Ajk/PiOAJP, j.k=0..... m,

where AOO = 0. The irreducibility of this matrix is equivalent to the

existence of unique positive numbers Wi wo that satisfy
m
(4.3) Z{w A, - wA ) =0, Jg=0..... m.
kg 4 I Kk
m n,
where Wy = 1. We also assume that 2 ¢(n) I w.J is finite. Then X is
n Jj=1

positive recurrent and has the equilibrium distribution (p.198 of Whittle

(1956))

m n,
(4.4) w(n) = c®(n) N ij. n o ZT.
j=1

where ¢ is the normalizing constant. Hercafter, we assume that X is

stationmary.

NN NN N Y

VA v. N

A A A At P B Ay (o P L P
2 _(J"'\-,f%f .'\':fx‘p- / w0 P w. _.,\“-:{_.
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Now, consider the point process

Nio(A) = 3 1X(1) = X(t-) - e)

teA

that represents the times at which units exit the network from node j.

'.",“*5“.15'9

L P

Of course, N_. = O when Aj 0]

Jjo

Theorem 4.1. The exit processes N1 N . are independent Poisson v

oMo

DALIII®

o~ X

. Jil 2
processes with rates wlAIO""'wmAmO' and (NIO""'NmO)— X, 4

Whittle (198G) on p. 207 proved this by establishing that the fﬂ

2
reverse time process X of X is again a queueing network process and the

exit processes of X are just the time reversals of the Poisson input ‘w
processes of X*. Theorem 4.1 also follows from Theorem 3.2(ii) and Qy
Remark 3.4 since, for each n and j, i
\v‘
»* -1 '.'
a (n.{e.})) = v(n) "w(n + e )q(n + e..n) = w A, N
(n.{e;}) = 7(n) " 'm(n + e )a(n + e .n) = WA 3

and a*(n.(z)) = 0 elsewhere. ::
-\_

Along with these exit processes, consider the point processes ;_

.

» ]

-~ ¥ = - -

Njk(A) =2 H(X(t) = X(t-) ej + ek) J

teA

o

+,

of times at which units move from node j to node k. We shall now

identify sets JC {l,....m}) and K C {O.1.....m} such that Njk' JjeJ. keK W
htt?
W
are independent Poisson processes. Suppose that J and K satisfy the N
\
following assumptions: n
Al: Fach unit that exits J can never return to J. (To verify this one z;
> N
need only check the possible routing under Ajk') QﬁA
“
.h.
A2: The system-dependent departure intensity for each node jeJ is of the L
v 1
form %
o
\.
¢(n - e.)/d(n) =¢ (n, - ¢.)/¢ (n o
(n = eg)soln) = @ylny = e;)/a)ny) i
: PR . N
where nJ = ("j 1 jeJ). and ®J is a positive function on such vectors. R
R
b
I.
-
o e T, T R A T e L T A e e e T LNt R N L L N L o L T v T Lt e Y Y O e LS T N
-'J'J“wf‘-ru'.'-(‘-’f.f,-'.’-rr.r).-a e T Y A e LY T e
2907 N A e P A I A e N A S S i S AT S S S A I I WL N T LAY AN 5,"\‘
"’og‘oft's, WIS '*' o. .“*"‘ " U.“ ‘, s.‘l. ... -' W S e - JA‘. ‘ AN, b,y ‘c.o.
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K ”
4 A3: K is the largest subset of {O0,1...., m} such that each unit in K K
i ?

cannot enter J on a subsequent move. (Note that O € K and

-
-

> JNK=1{je€]J: Aje =0, 2 € J}.
) "
“ For some networks, J = {1....,m} may be the only set of nodes that &
Y
- satisfies Al. At the other extreme are networks in which each node is b
: visited at most once by a unit, and so each subset of nodes sutisfies Al. :
# Assumption A2 is equivalent to being able to factor ¢ as 3
' ¢(n) = ¢J(nJ)\P(nk : k€]J). Upon selecting J conforming to Al, A2, it is -
: M
.: advantageous to select K ans large as possible as we did in A3.
o iy
¥, i
% Let XJ(l) = {Xj(t)!jLJ). teR, denote the process X on the nodes | B
| .
3 and ktﬂJdﬂmw its state space. g
:‘ Theorem 4.2. The processes Njk‘ jeJ. keK, are independent Poisson r;
\ processes with respective rates ijjk' jeJ. kek.  Furthermore, i
v
.l 1 9 i
{NJ,k jedJ. keK} (XJ)+
) o
. Proof. Under the assumptions, the XJ is a queueing network process on -
.".
) the nodes J with transition rates qJ(n.n') defined as in (4.1) with the 3
R last line replaced by W
i qJ(n.n - ej) = Aj¢J(n - cj)/®J(n), n-j 2 1, nLﬂJ, :
> where A, = 2 A, . Furthermore, X, has the equilibrium distribution .
- J L J
e keK
N n, N
m (n) =c @ (n) mn o, ned .
") J7J J J =
g < ;
| This is just the sum of #{n) in (4.4) over all n,. #¢J. Thus, from :2
o ' N
) Theorem 4.1, we know that X,'s exit processes N, =3 N. . jeJ. are ~
L J . jk !
ke K -
independent Poisson processes with respective rates WJAJ. JjeJ. and that z
3 ‘
3 (N sed)_ L (X)) 3
j - J + .
-
-
' 2
L O
o
" 2
o X
‘o [
y 3
"b ..‘. "’."'\:’-—'- v .\, .,. '..“ e F’“\:ﬂ; » % N o T e A S A A L AR
i , \ A \‘\, a \ ‘ Ly 4' v, .\J'.') Ly
" C.‘..VQ'O .l .’% ‘)‘. "l .Q.' .ll."':':.‘h.." NN >‘ , "‘ 20 N K ! M ok . y o oo ¥l " v
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Next, observe that for each j € J., the processes Njk' k ¢ K, form a
partition of N. in which each point of Nj is assigned to the subprocess
Njk with probability Ajk/Aj' independent of everything else. Conse-
quently, N'k' k e K. are independent Poisson processes with respective
rates (N, /A, w.A ) =w A . kK (see for instance p.89 of Cinlar

(Jk J)(JJ) j ik ( ° P ’

(1975)). This property and the preceding argument yield the assertions.O
Example 4.3. Suppose the network has a node j such that each unit
passing through the network visits j at most once. Also, assume that
¢(n) = ¢j(nj)¢(nk:k # j). and let J = {j}. Then the departure processes
N ..N. ,...,N._ are independent Poisson processes as in Theorem 4.2.

Jo gt Jm

Now. suppose that each node of the network can be visited at most once by
’ 3 . = . . ” 3 g ‘ess up

each unit and ¢(n) ¢](nl).. ¢m(nm) Then each process Njk is PM(w, AJk)
some of these processes miy be dependent. Consider the arrival processes
to a fixed node k. let | denote the set of all nodes j that can never be
reached from k. Then. under the preceding supposition, the arrival

processes N JeJ. are independent Poisson processes as in Theorem 1.2,

ALY
Example 4.4. Multivariate Poisson Flows. Suppose Jl""'Jn are subsets

of {1,...,m}) and K Ku are subsets of {0.1,...,m} (the subsets nced

not be disjoint). Consider the process Ni =3 N_. of times at which

Jed;

keK,

i

units move from some node in Ji to some node in Ki' Suppose the sets
J = JlU"'UJv and K = KlU...UK“ satisfy assumptions Al, A2, A3, or that
they are contained in a pir of such sets. Then Njk' jeJ. keK, are
independent Poisson processes as in Theorem 1.2, Consequently,

N”) is a p-dimensional Poisson process with rate a = ¥ W'Ajk and

Jel
ke K

(N

point allocation distribution
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,
N -1 1 ;
:‘ F({ 2 e, )) h3 w.)\.k ,..
: iel J.k JJ +
" where 1 C {1,...,v}. and the sum is over all j in N J.. and k in NK_ . -
h el ? iel
" ’
X
:. The Nl ..... Nu are independent if N Ji =¢and NK, = ¢. )
{ i i ! .
' 0l
Example 4.5. Networks With Several Types of Units. Consider a network as -
8
; above in which each unit carries a label from a finite set 4 of types and >
¢ 4
the label my change when the unit moves. We represent this network by A
- the process X() = {x'nj(l): aed, j=1,....m}, teR, where Xuj(l) is the '
\) t
:’ number of type a units at node j at time t. A typical state of X is Vi
.. »
¥, n = (n,‘ji aed, j=1,....m). We assume that X is a Markov process with K
transition rates (analogous to (4.1)) =
~ aln.n + e ) = Ag bk 4
N Ly
- - - - »
X q(n.n eaj + cbk) = Auj.bk ¢(n euj)/¢>(n), ":1‘)‘ 2 L. ;
[ 14
- = - > 1.
q{n.n eaj) Auj,() ¢(n euj)/¢(n). “H.i 21
». Under assumptions as above, the process X has the equilibrium iy
o, >
distribution ‘
[ [
. n . t
m(n) = cO) M w_° T
' aj J 34
L v
- The results above hold for this network - one need only use double o
r
indices aj. bk in place of j.k and consider the point processes :
‘I
Naj bk aj ¢ J. bk ¢ K, where J, K satisfy assumptions Al. A2, A3 with .
' A
double indices. For instance, suppuose A C 4 is such that a unit with a ::
o
:. label from sN\A can never carry a label from A, Consider the point py
W
processes of times at which units change labels from A 1o (NA.  These -
X
“ processes are N . . ajCl, bkCK, where J = {aj: acA, j=1...., m} and ::
aj.bk <
‘_; = {bk: bGMNA, k=0...., m}. Clearly J satislies Al and K satisfies A3, ‘:-
b
K ‘o
X
D DY,
' g
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Suppose ] also satisfies A2. Then the preceding point processes are

independent Poisson processes with respective rates {w and the

A .
aj aJ.bk)
past of these processes is independent of (XJ)+'

The preceding results are for networks in which only one unit can
move at a time. In networks with simultaneous movement of units, the

flows among the nodes may be compound Poisson processes. Kook {1988) has

characterized such flows usinug Theorem 3.2.

5. Further Ceneralizations

The results in Sections 2 and 3 readily extend to more general
processes. We discussed some of these situations in the remarks above.
Here are some more generalizations.
Markov Processes With General State Spaces. Suppose that X = {XL:tcR) is
a pure jump Markov process with a general state space E and associated
o-field €, and its transition kernel is K(x.B). xeE., Beé. That is, the
exponential sojourn time in state x has parameter K(x.E) and the
probability of X jumping from x into B is K(x.B)/K(x.E). Then the
results in Sections 2 and 3 hold with the sums replaced by integrals.
For example, a* is the Radon-Nikodym derivative

a"(x) = | m(dy)K(y.dx)[(y.x)/n(dx).
E

Functionals Involving Sojourn Times. Suppose X is a Markov process as in
Section 2 and

N(A) = X f(Xl.X(_.W()
teA

where Wl is the waiting time in state X(_ and 20 x 4 x R+ - {0.1). Then

the results of Section 2 hold for this N with a. a deflined by
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) i
)
f! N
K N
: . . 5
d a(x) = 2 [0 q(x.y)[(x.y.w)F _(dw) X
: y
* e LI '
- a (x) = m(x) [, ¥ m(y)aly.x)f(y.x.w)F, (dw)
) y -v.
. where Fx(w) = 1 - exp(-wq(x)}). Similarly, the results of Section 3 hold ﬁ
i q
=
' for M as a functional of Wl as well as of Xt.Xt_. One can generalize Y,
i further by assuming that X is a semi-Markov process and replacing Fx by a >
b <
2 general sojourn time distribution Fx y ;
\ : -
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